Words of Wisdom:

"Think of Fate as, no matter what you are doing, your doing what you were meant to do" - M.manson0221

Neutrons and Protons

  • Date Submitted: 01/11/2012 09:02 AM
  • Flesch-Kincaid Score: 25.2 
  • Words: 450
  • Essay Grade: no grades
  • Report this Essay
The neutrons and protons that constitute nuclei, as well as other particles that approach close enough to them, are governed by several interactions. The strong nuclear force, not observed at the familiar macroscopic scale, is the most powerful force over subatomic distances. The electrostatic force is almost always significant, and, in the case of beta decay, the weak nuclear force is also involved.
The interplay of these forces produces a number of different phenomena in which energy may be released by rearrangement of particles in the nucleus, or else the change of one type of particle into others. These rearrangements and transformations may be hindered energetically, so that they do not occur immediately. In certain cases, random quantum vacuum fluctuations are theorized to promote relaxation to a lower energy state (the "decay") in a phenomenon known as quantum tunneling. Radioactive decay half-life of nuclides has been measured over timescales of 59 orders of magnitude, from 3 x 10-27 second (for helium-2)[citation needed] to longer than 2.4 x 1032 seconds (for tellurium-128). The limits of these timescales are set by the sensitivity of instrumentation only, and there are no known natural limits to how brief or long a decay half life for radioactive decay of a radionuclide may be.
The decay process, like all hindered energy transformations, may be analogized by a snowfield on a mountain. While friction between the ice crystals may be supporting the snow's weight, the system is inherently unstable with regard to a state of lower potential energy. A disturbance would thus facilitate the path to a state of greaterentropy: The system will move towards the ground state, producing heat, and the total energy will be distributable over a larger number of quantum states. Thus, an avalanche results. The total energy does not change in this process, but, because of the law of entropy, avalanches happen only in one direction and that is toward the "ground state" — the...


Express your owns thoughts and ideas on this essay by writing a grade and/or critique.

  1. No comments