"''When all have failed, you should read the instructions''"

- Ommondoitfloin

Contours

A contour line (also isoline or isarithm) of a function of two variables is a curve along which the function has a constant value.[1] In cartography, a contour line (often just called a "contour") joins points of equal elevation (height) above a given level, such as mean sea level.[2] A contour map is a map illustrated with contour lines, for example a topographic map, which thus shows valleys and hills, and the steepness of slopes.[3] The contour interval of a contour map is the difference in elevation between successive contour lines.[4]

More generally, a contour line for a function of two variables is a curve connecting points where the function has the same particular value. The gradient of the function is always perpendicular to the contour lines. When the lines are close together the magnitude of the gradient is large: the variation is steep. A level set is a generalization of a contour line for functions of any number of variables.

Contour lines are curved or straight lines on a map describing the intersection of a real or hypothetical surface with one or more horizontal planes. The configuration of these contours allows map readers to infer relative gradient of a parameter and estimate that parameter at specific places. Contour lines may be either traced on a visible three-dimensional model of the surface, as when a photogrammetrist viewing a stereo-model plots elevation contours, or interpolated from estimated surface elevations, as when a computer program threads contours through a network of observation points of area centroids. In the latter case, the method of interpolation affects the reliability of individual isolines and their portrayal of slope, pits and peaks

Types of contour lines

Contour lines are often given specific names beginning "iso-" (from Greek ίσος (isos), meaning 'equal') according to the nature of the variable being mapped, although in many usages the phrase "contour line" is most commonly used. Specific names are most...

A contour line (also isoline or isarithm) of a function of two variables is a curve along which the function has a constant value.[1] In cartography, a contour line (often just called a "contour") joins points of equal elevation (height) above a given level, such as mean sea level.[2] A contour map is a map illustrated with contour lines, for example a topographic map, which thus shows valleys and hills, and the steepness of slopes.[3] The contour interval of a contour map is the difference in elevation between successive contour lines.[4]

More generally, a contour line for a function of two variables is a curve connecting points where the function has the same particular value. The gradient of the function is always perpendicular to the contour lines. When the lines are close together the magnitude of the gradient is large: the variation is steep. A level set is a generalization of a contour line for functions of any number of variables.

Contour lines are curved or straight lines on a map describing the intersection of a real or hypothetical surface with one or more horizontal planes. The configuration of these contours allows map readers to infer relative gradient of a parameter and estimate that parameter at specific places. Contour lines may be either traced on a visible three-dimensional model of the surface, as when a photogrammetrist viewing a stereo-model plots elevation contours, or interpolated from estimated surface elevations, as when a computer program threads contours through a network of observation points of area centroids. In the latter case, the method of interpolation affects the reliability of individual isolines and their portrayal of slope, pits and peaks

Types of contour lines

Contour lines are often given specific names beginning "iso-" (from Greek ίσος (isos), meaning 'equal') according to the nature of the variable being mapped, although in many usages the phrase "contour line" is most commonly used. Specific names are most...

Express your owns thoughts and ideas on this essay by writing a grade and/or critique.

**Sign Up** or **Login to your account** to leave your opinion on this Essay.

Copyright © 2021. EssayDepot.com

No comments